RESEARCH-IN-BRIEF

How Visible is Communication Studies?
Press Coverage of the Discipline in Three German-Language Quality Newspapers

Wie sichtbar ist die Kommunikationswissenschaft?
Die Presseberichterstattung über die Disziplin in drei deutschsprachigen Qualitätszeitungen

Cornelia Brantner & Brigitte Huber
How Visible is Communication Studies? Press Coverage of the Discipline in Three German-Language Quality Newspapers

Wie sichtbar ist die Kommunikationswissenschaft? Die Presseberichterstattung über die Disziplin in drei deutschsprachigen Qualitätszeitungen

Cornelia Brantner & Brigitte Huber

Abstract: Stimulated by public debates on the media presence of communication studies, the current study is the first to examine the media coverage of the discipline. In a quantitative content analysis, the coverage of three German-language quality newspapers in both 1999 and 2009 was analyzed in order to compare news reporting on the discipline’s findings and on experts’ statements. Overall, communication studies was rarely covered in the science section, but was instead reported on by media journalists and chronicle, feature, political and cultural journalists. In their coverage, the journalists show high interest in research and statements on media politics, system and structures, on journalists themselves and on political communication. The findings indicate that communication studies are increasingly used as an additional element in news reporting, particularly in the form of expert statements. Moreover, there is evidence that the initiative of scholars and their willingness to act as experts are the more decisive factors for media coverage than the journalism culture.

Keywords: science coverage, content analysis, communication studies, communication science, experts

Schlagwörter: Wissenschaftsberichterstattung, Inhaltsanalyse, Kommunikationswissenschaft, Experten
Over the last decades, the practical importance and the societal relevance of communication studies have been recurring subjects in public debate. In 1996, in the weekly *Die Zeit*, Silbermann imputed “quirky pomposity” and “reality blind uselessness” to German communication studies, a reproach that did not remain uncontested. Russ-Mohl (1997) countered that the discipline was not actually inefficient, but its central problem was rather “that these performances obviously are not even noticed adequately by peers, let alone media practices or the general public”. He blamed this problem on the underdeveloped communication ability of the discipline as well as on the journalists’ lack of interest in communication research. Saxer (1997) spoke of a “precarious mass media public” of the social sciences in general and joined in the “lament of social scientists over their scarce media presence” (Weßler, 1997, p. 117). However, in the “media society”, a lack of media attention is deemed problematic because the low media presence of a discipline could indicate its low societal relevance (Peters et al., 2008; Rademacher, 2011).

As the question on the visibility of our discipline in the public sphere remains unresolved, the objectives of this article were to provide empirical evidence for the media presence of research and scholars in German-language quality newspapers and to discuss the journalistic coverage of the discipline against the background of medialization (Peters, 2012; Peters et al., 2008; Weingart, 2012). On a macro level, the “medialization of science” refers to the interrelations between science and media (Weingart, 2010, p. 17) and to two simultaneous processes: (1) media attention for scientific issues increases, and (2) as science faces the growing pressure of legitimation, it adapts to media criteria by means of public communication (Peters, 2012). Hence, communicating to the public becomes more and more important for scientists and scientific institutions (Peters et al., 2008; Schäfer, 2011).

1. Literature Review and Research Questions

There is a lack of research on the media’s coverage of social sciences, in general, and communication studies, in particular. According to Schäfer’s (2012, p. 655) meta-analysis of studies on science coverage, 93% of the analyzed disciplines are natural sciences, and only 6% of the studies observe social science coverage. Thus, there are only a few, mainly older, studies that explicitly look at the press coverage of social sciences (e.g., Evans, 1995; Fenton et al., 1998; Hömberg, 1981; Jarren & Weßler, 1996; Weßler, 1997; Weiss & Singer, 1988), but hardly any research exists that takes communication studies into account (except Böhme-Dürr, 1992; Hohlfeld, 2003; Krüger & Müller-Sachse, 1998; but the coverage of our discipline is not their main focus). Moreover, some of the works on media journalism consider media research reporting as a subarea of media journalism (e.g., Beuthner, 2005; Malik, 2004) but do not provide empirical data on the coverage of communication studies.

Hence, our study is rather exploratory, and we formulate broad research questions based on the following literature review. In addition, we address the question whether the media cover-
age of the discipline shows signs of medi-
dialization. Therefore, we apply two of
the three indicators proposed by Schäfer (2009): extensiveness and in-
creasing controversy. Extensiveness re-
fers to the overall increase of science
coverage, whereas controversy signifies
the increasing evaluation of science
and refers to its growing critical evalu-
ation.1 Furthermore, we investigate if
the coverage of the discipline can be
traced back and linked to intensified
agenda-building efforts (Schäfer,
2011), particularly improving PR
work.

Overall, empirical studies investigat-
going science coverage in general dem-
strate that social sciences are less fre-
quently reported than natural sciences
(e.g., Böhme-Dürr, 1992; Göpfert &
Schanne, 1998; Kaltenbrunner et al.,
2006). Yet in the longitudinal perspec-
tive, their coverage has increased
(Göpfert & Schanne, 1998), particu-
larly if social science findings reported
as ancillary items are taken into ac-
count (Weiss & Singer, 1988) or in re-
spect to experts functioning as pundits
(Albaek et al., 2003). Accordingly, in
our analysis, we distinguish between
the coverage of studies and the citation
of pundits’ statements (e.g., Fenton et
al., 1998; Jarren & Weßler, 1996). We
are particularly interested in the ques-
tion whether our findings match those
by Albaek et al. (2003), who found so-
cial scientists in Danish newspapers to
be covered increasingly and to serve
predominantly as expert commenta-
tors on several issues, whereas only
few references are made to their explic-
it research results.

RQ1: How do newspapers co-
ver communication studies in terms of
“coverage modes”? (a) Has the
amount and nature of the coverage of
communication studies changed from
1999 to 2009? (b) Is there a difference
between the three investigated quality
newspapers?

RQ2: What differences can be
detected between the coverage of com-
munication research and the expert
statements in the coverage, and are
there differences between the years?

Research has shown that social scienc-
es mainly appear outside the science
sections (e.g., Goepfert & Schanne,
1998; Kaltenbrunner et al., 2006), and
many journalists reporting science
news in these sections are assumed to
“not recognize that they do science
journalism” (Wormer, 2009). Moreo-
ver, “media research journalism” is
deemed a subarea of media journalism
(e.g., Beuthner, 2005; Malik, 2004).
Accordingly, we expect communica-
tion studies mainly to be covered out-
side the science sections and, in par-
ticular, in media sections.

RQ3: Which sections are domi-
nant in covering the discipline, and can
it be confirmed that communication
studies is rarely reported on in science
sections?

Furthermore, the triggers for coverage
– in particular, the agenda-building ef-
forts by scientists and science institu-
tions – are of interest.

RQ4: What triggers is the co-
verage based on, and are the scientific
triggers increasing over time?

1 Our conceptualization does not allow for an
adequate gauging of the third dimension
that Schäfer (2009) proposes (pluralization).
It refers to the increasing actor and content
diversity, and can only be observed within a
design focusing on the coverage of specific
issues.
Findings show that editorial comments on science are relatively rare, with most of them being positive (e.g., Elmer et al. 2008; Fenton et al., 1998; Göpfert & Schanne, 1998). Media-ization within the dimension “controversy”, however, is expected to yield an increase in the amount of evaluations as well as of critical evaluations.

RQ5: How do the media evaluate scientific knowledge of the discipline and/or the discipline as a whole? Can we observe increasing controversy in the coverage from 1999 to 2009?

As there are hardly any comparable empirical results on our discipline and on the covered research topics and areas, we broadly ask the following:

RQ6: What are (a) the media types the covered studies and statements deal with and (b) the research fields and topics that garner media attention?

2. Methods

In a quantitative content analysis, we analyzed all articles dealing with communication studies’ findings and/or experts (from universities and other non-commercial research institutions) published in 1999 or 2009 in the Süddeutsche Zeitung (Germany), Neue Zürcher Zeitung (NZZ, Switzerland), and Der Standard (Austria). The main focus of interest was set on the structure and intensity of the newspapers’ reporting rather than on the cross-country comparison. The leading national newspapers were chosen because they signify both excellent and responsible quality journalism (Blum, 2011) and are expected to provide the most intense coverage of communication studies. Obviously, the examination of only one newspaper per country might endanger creating a biased view insofar as a single proxy might not be representative for the whole spectrum of a country’s quality media. Therefore, we strongly suggest testing our findings in the scope of larger-scale studies. Yet the present study does not focus on a comparison of countries but serves as an exploratory study, being the first to question how German-language newspapers cover the discipline.

The sample comprises two dates of measurement as it was of interest whether the media coverage has changed since Silbermann (1996) and Russ-Mohl (1997) made their diagnoses. We selected 1999 instead of 1996 for practical reasons, as it was the first year in which all three media were stored in the selected databases. As only two periods were analyzed, inferences about longitudinal trends are made with caution.

The methodological conception of the study as a quantitative content analysis only enabled us to observe manifest content. Hence, the latent scientific knowledge transfer and thus the implicit diffusion (Weßler, 1997) of communication studies content were not measurable in this study and thus remain subject to future research.

Sample

The data encompass a full inquiry of the newspapers in 1999 and 2009. For article collection, we used the data banks Wiso and Factiva, using the
same 44 keywords² for all observed media. The coding process was conducted for every article in which communication studies appeared explicitly, regardless of whether it was the main topic or an ancillary item.

Variables Examined

Coverage modes: To assess the different modes of media coverage of the discipline, we coded the articles into seven categories derived from the science’s share, genre, main topic, and knowledge type, for example, “communication science journalism” (for the categories, see Table 1).

Science share: If more than half of the article dealt with communication studies, it was coded as the “main topic.” The coding scheme further distinguished between “big” (more than a third of the article’s share) and “small” ancillary items (less than a third). As minor references also contribute to the

visibility of the discipline, they were coded as well (e.g., articles mentioning communication studies incidentally or fleetingly but containing at least actors’ names or institutions).

Sections, genres, and main topics: The articles were categorized by the newspapers’ section in which they appeared and by their journalistic genre. The main topics of the articles (beside communication studies) were coded into 15 categories (e.g., media, political, and economic issues).

If an article contained knowledge elements (communication studies research or experts’ statements), the following variables were coded additionally. For each article, only one scientific knowledge element was coded in detail.

Knowledge type: It was assigned to which category (“research” or “expert statement”) the element belongs.

Triggers: It was coded if the trigger for the coverage of communication studies was scientific (e.g., launch/publication of results, press releases), partly scientific (e.g., discussions with participating scholars), or nonscientific.

Evaluations: Any positive, ambivalent, or negative evaluation of the study or the expert was coded, as well as who (e.g., journalist, guest editor) evaluated what (credibility, quality, comprehensiveness, and independence); multicoding was possible. Furthermore, it was analyzed if communication studies as a whole was the subject of judgments.

Media type: Each knowledge type was coded in terms of the media subject it was concerned with, categorizing if the article dealt with print, print and TV, broadcasting (TV and/or radio), online, print and online media, media or journalism in general, and
other media (e.g., video games) or had no direct relation to media or journalism.

Research fields and topics: In accordance with Lasswell’s formula and the systematization of the process of public communication by Bentele et al. (2003), the knowledge elements were categorized within the following five research fields: (1) media analysis, (2) communicator, (3) media content, (4) audience and media use, and (5) media effect research. In addition to that, the subtopics gaining media attention within the research fields were coded (see Table 4).

Two coders coded the same 9% of the sample to establish intercoder reliability. Reliability was checked by means of the percentage of agreement, yielding sufficient scores ranging from 100% to 76% (for evaluation).

3. Results

Amount and Coverage Modes (RQ1)

In sum, 587 articles dealing with communication studies were coded. Thus, on average, every third day, an article covering the discipline was published in each newspaper. Our results show a variety of ways journalists report on the discipline. Overall, seven different modes of coverage were identified (see Table 1).

The first category, “communication science journalism”, contains all articles dealing with communication studies or researchers as the main item (19.8%). If it was not the main topic but instead the article reported a media issue and thereby incorporated communication studies as a subissue or just referred to it, the article was assigned to the second category, that is, “media journalism including...”. This applies to more than one in every four articles (27.9%). The third category, the articles on other topics (mainly societal or political), included studies (2%) and experts (3.9%) of the discipline or referred to it (5.8%). The fourth category, “guest editorials” of communication scientists, represents 10.2% of the reports. It was mainly the NZZ that gave communication scholars a platform for direct knowledge transfer. In particular, this may be attributed to the fact that in the NZZ, scholars (e.g., Russ-Mohl) write guest editorials on a regular basis. A further 3.4% of the articles stem from other guest editors citing experts from the discipline (category five). The sixth category, “training and study”, consists of articles giving information about the study of communication or associated disciplines as well as on professional training within the course of studies (10.4%) or similar references (8.3%). Finally, the seventh category includes short notices on scholars, primarily announcements and personnel updates (8.2%).

Differences between years and among media (RQ1a and RQ1b)

The “extensiveness” of the reporting, that is, whether the discipline’s representation increased in the analyzed newspapers from 1999 to 2009, was examined. Altogether, the amount of coverage rose by 12.7% between the two analyzed years, from 276 to 311 articles. Although the overall visibility
of the discipline increased, our results do not reveal a consistent picture on the changing amount of coverage. While the number of articles in the NZZ decreased slightly, the number of articles in the other two newspapers increased. Overall, the NZZ published the most articles and outruns Der Standard and Süddeutsche Zeitung in terms of “communication science journalism” in the narrower sense.

Knowledge Types: Research and Experts (RQ2)

Up to this point, we considered all 587 articles dealing with the discipline in a variety of ways. In this section, we focus on those articles containing knowledge of the discipline. In sum, 356 arti-
cles with knowledge elements were identified (boldfaced data in Table 1). These elements were further coded into “research” or “expert statement” (see Table 2).

Journalists cover both research (46.9%) and expert statements (48.9%) with about the same frequency. The latter category comprises all statements where scholars functioned as pundits commenting on issues and topics without referring explicitly to current research. If an article reported research results, these tended to appear as the main item (75.4%). The reverse picture emerges when looking at the expert statements, with 59.8% of them being used as ancillary item in the coverage.

The increase in the overall covered knowledge elements may be attributed to the increase in the coverage of pundit statements in 2009 (from 77 to 97), whereas the coverage of research remained almost at the same level (81 and 86). Thus, our results confirm to the findings of Albaek et al. (2003, p. 944f), who stated that social science scholars are increasingly covered by media. We also found, similar to the study of Albaek et al. (2003, p. 945), that communication scholars are mainly commenting on several issues without referring to research results. Taken together, the current study found 239 articles in which they had a say, but only 27% of their statements involved research findings.

Sections (RQ3)

As expected, very few (4.2%) of the articles were found in science sections. Most articles were published in the media sections (42.4%) or with a share of 53.3% in other sections, particularly in chronicle (9.8%), political (8.4%), feature (9.8%), or culture

5 In sum, 65 (39%) of the 167 reports on research findings included comments from scientific researchers, but as findings were the main focus of these items, they were classified as “research” articles. Taken together, we found 239 articles covering expert statements (174 of which were without references to research findings plus the 65 on research findings that included scholars’ statements).

<table>
<thead>
<tr>
<th>Knowledge type</th>
<th>% of total</th>
<th>Standard</th>
<th>SDZ</th>
<th>NZZ</th>
<th>Main item</th>
<th>Big ancillary</th>
<th>Small ancillary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research (N=167)</td>
<td>46.9</td>
<td>40.6</td>
<td>35.2</td>
<td>58.7</td>
<td>75.4</td>
<td>9.0</td>
<td>15.6</td>
</tr>
<tr>
<td>Expert statements</td>
<td>48.9</td>
<td>57.3</td>
<td>57.1</td>
<td>38.1</td>
<td>40.2</td>
<td>14.4</td>
<td>45.4</td>
</tr>
<tr>
<td>Other forms* (N=15)</td>
<td>4.2</td>
<td>2.1</td>
<td>7.6</td>
<td>3.2</td>
<td>26.7</td>
<td>6.7</td>
<td>66.7</td>
</tr>
</tbody>
</table>

% column

<table>
<thead>
<tr>
<th>% of total N=356 (row)</th>
<th>100.0</th>
<th>100.0</th>
<th>99.9**</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total N=356 (row)</td>
<td>100.0</td>
<td>96</td>
<td>105</td>
<td>155</td>
</tr>
</tbody>
</table>

Note. For knowledge types/media: $\chi^2(4)=19.307$, $p<.05$; for knowledge types/science share: $\chi^2(4)=52.911$, $p<.05$; *other forms of knowledge types e.g. contain references to a discipline’s theory without covering research or recent expert statements; **rounding error.
(5.3%) sections. Thus, the current study confirms what several studies already found (e.g., Kaltenbrunner et al., 2006; Weßler, 1997), that is, social sciences are deemed “outside the realm of accepted science journalism” (Elmer et al., 2008, p. 881).

Triggers (RQ4)

Table 3 illustrates that the most common triggers for reporting on the discipline were nonscientific in nature (58.4%). 34.2% of the coverage relied on scientific triggers, but scientific journals as sources were mentioned in only five cases. Although scientific journals are important sources for science journalists (Elmer et al., 2008), journalists writing about the discipline largely ignore the discipline’s journals.

6 The decline of the overall coverage in the NZZ might be at least partly attributed to the fact that it diminished its media section in 2007 (Straub & Schönhagen, 2007). Indeed, in 2009 we found fewer articles (33) in the media section than in 1999 (39), but it’s noteworthy that the decline was even higher in the domestic-politics section (-9).

The concept of the medialization of science suggests that scientists and science institutions have increased their agenda-building efforts (Peters et al., 2008; Schäfer, 2011). Still, our findings indicate that these efforts were not reflected in the media. Contrary to the expectation, the share of scientific triggers slightly decreased. However, it must be pointed out that we were not able to determine scientific triggers if they were not indicated within the article itself. Additional input-output analyses and interviews with journalists and scholars are thus needed to satisfactorily examine this aspect.

Evaluations (RQ5)

An evaluation of a study or an expert was identified in 97 (27%) of the total 356 articles. Around 54% of these comments were positive, only 15% were negative, the rest (31%) were ambivalent. In comparison to the findings of Fenton et al. (1998, p. 31), the present study found a slightly higher share of evaluations (27% vs. 20%) on the one hand, but less critical comments (15% vs. 40%) on the other.

Table 3: Triggers for Reporting Communication Studies

<table>
<thead>
<tr>
<th>Triggers</th>
<th>Total (%)</th>
<th>Science share</th>
<th>Year 1999 (%)</th>
<th>Year 2009 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non scientific triggers</td>
<td>58.4</td>
<td>80.8</td>
<td>41.0</td>
<td>51.8</td>
</tr>
<tr>
<td>Scientific triggers:</td>
<td>34.2</td>
<td>8.9</td>
<td>54.0</td>
<td>37.5</td>
</tr>
<tr>
<td>Launch/publication of results</td>
<td>27.5</td>
<td>1.9</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>Press conference, press release from scientists</td>
<td>2.8</td>
<td>3.2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Scientific news agency report</td>
<td>0.8</td>
<td>0.6</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Scientific conferences</td>
<td>3.1</td>
<td>3.2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Partly scientific triggers: Other conferences (e.g. discussions with participants from the discipline)</td>
<td>7.3</td>
<td>10.3</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Total (N)</td>
<td>356</td>
<td>156</td>
<td>200</td>
<td>168</td>
</tr>
</tbody>
</table>

Note. For ancillary or main issue/triggers: \(\chi^2(5)=93.474, p<.05\); for year/triggers: \(\chi^2(2)=8.438, p<.05\)
In the present study, most of the evaluations dealt with the quality of scientific knowledge \((n=75)\). The credibility of scientific knowledge was the second most frequently evaluated \((n=55)\), whereas both the comprehensiveness \((n=9)\) and the independence \((n=6)\) of scientific knowledge were seldom the subject of commentary.

Most articles with evaluations were found in the \(NZZ\) (56%); \(Süddeutsche Zeitung\) and \(Der Standard\) contained 30% and 14% of the evaluations, respectively. Almost half of the 15 negative evaluations were made in the \(Süddeutsche Zeitung\). Two-thirds of all evaluations stem from journalists and were mainly made within opinion-oriented genres.

However, it could be argued that a lack of critical assessment and additional information hinders audiences from drawing their own conclusions (Elmer et al., 2008; Weßler, 1997). Overall, our study provides no evidence regarding the “increasing controversy” dimension of medialization. On the contrary, 54% of the evaluations were found in 1999. Thus, neither the total amount of evaluations nor the ambivalent and critical evaluations have increased.

In responding to negative reactions from journalists to a study investigating the current state and quality of Swiss media, Wyss (2011) claimed that for public debates in democracies, a type of media journalism is needed that does not react with “science bashing”. However, we found only 31 articles containing evaluations of the discipline, and only in three articles, all found in the \(Süddeutsche Zeitung\), the field itself was “bashed” by journalists.

Figure 1: Covered Media Types of the Reported Studies and Statements

![Figure 1: Covered Media Types of the Reported Studies and Statements](https://doi.org/10.5771/2192-4007-2013-2-247), am 22.09.2020, 05:07:27

Note. For media types/year: \(\chi^2(7)=6.347, p<.05\), for media types/media: \(\chi^2(14)=44.626, p<.05\)
Media Types (RQ6a)

Figure 1 shows that research and statements on the media or journalism in general were the subjects of 35.2% of the knowledge elements. The observed newspapers also had a high interest in findings and statements on print media (21.4%, thereof 16.1% on print media alone, 2.1% on print media and TV, and 3.2% on print and online media). The newspapers were interested in scientific knowledge on broadcasting to almost the same degree (20.2%).

Knowledge on media and journalism in general was less often reported in 2009 (27.9%) than that in 1999 (43.7%). Not surprisingly, research and statements on print media (11.4% to 20.2%) on the relationship, influence, and disparity between traditional and online media (1.9% to 4.4%) and on online media (11.4% to 16.9%) attained increased attention in 2009.

Among the three newspapers, self-monitoring and potential self-reflection reached almost the same level, as studies and statements on print media had a similar share in the papers.

Research Fields and Topics (RQ6b)

In the interest of clarity, Figure 2 contains only those 322 knowledge elements that could be classified under the five research fields mentioned before.7

Findings and statements concerning media analysis were reported the most frequently (32.6%), followed by communicator analysis (27.0%) and media content (19.3%). Newspapers showed less interest in the research fields audience and media use (12.4%) and media effects (8.7%).

Note. For research fields/knowledge type: \(\chi^2(4) = 39.745, p < .05 \)
Differences between the coverage of research and of experts can be noticed. While pundits received the greatest media attention when talking about topics in the field of media analysis (44.8%), research reports relied on the findings of media content research to a high extent (30.2%). Unsurprisingly, findings from audience research were covered more frequently (16.4%) than expert statements in this field (8.6%).

To sum up, the analysis of the research fields and topics (see Table 4) reveals that journalists show interest especially in the scientific knowledge on media politics, systems and structures. Media analysis received the most attention, followed by communicator research, media content, audience and media use research, and media effect research. Within each field, certain topics were covered more frequently than others, with topics such as media politics and regulation, political coverage in general, and media literacy receiving the highest percentage of coverage. Other topics, such as advertising, were less frequently covered.
tures, journalists, and political communication.

4. Conclusion

This study has been the first to assess the coverage of communication studies in print media. It revealed relevant findings for both the discipline and our understanding of how the discipline is acknowledged by the media. Even though it is impossible to determine the right amount of coverage on communication studies, the analysis of the investigated newspapers revealed an article to be published every third day. Among these, the most frequent coverage was found in the NZZ, although its amount of reporting on the discipline decreased slightly from 1999 to 2009. In the Süddeutsche Zeitung and Der Standard, the number of articles increased over time. To summarize, the media coverage of communication studies has been extended, but only slightly. Our data did not support the assumption that a medialization of science would result in increasing controversy in the coverage. However, as already mentioned, the operationalization of controversy was limited to the measurement of the evaluation of studies and experts.

While there was no salient change between the investigated years regarding “communication science journalism” in the narrower sense, the newspapers used scientific knowledge as small ancillary items more frequently in 2009, and expert statements were especially used as additional elements in the coverage of other topics. This can be judged as an “indication for the penetration of social sciences into non-scientific contexts of coverage” (Jarren & Weßler, 1996, p. 11) because scientific knowledge is separated from its scientific context and re-contextualized by journalists. This finding is supported by the examination of the sections: communication studies is rarely mentioned in science sections but is generally covered by media journalists, followed by chronicle, feature, political, and culture journalists. In 2009, the journalists showed greater interest in scientific studies as well as in commentary on print media and the impact of online journalism on it. Hence, journalists demonstrate stronger self-monitoring and potential self-reflection. In doing so, they rely on scientific expertise. It may be argued that media research as a journalistic topic has a (at least slightly) growing influence on the media system “from the inside”. However, as our study analyzed only two periods, an extension of the investigation period and longitudinal comparisons are needed to confirm this assumption.

The use of scientific knowledge as an ancillary element implies that it is not necessarily relied on for its new insights but instead is instrumentalized by journalists (Kepplinger et al., 1991). Indeed, surveys among journalists have shown that it is a common journalistic practice to determine the direction the expert statements should go and which position fits into a fixed journalistic story frame before conducting interviews with scientists (Albaek, 2011; Peters, 2008).

Some scholars (e.g., Meckel, 2011; Wyss, 2011) demand that their col-

8 Beuthner (2005, p. 88) deems a specific performance of “media research journalism” (one of four types of media journalism) to bring more contextuality and data into the medial self-observation and thus to promote the theory-praxis-integration.
leagues improve their efforts, particularly their PR work, to enable a successful knowledge transfer that then underlines and enhances the societal relevance of the discipline. This study revealed that reporting on the occasion of scientific triggers has not increased. However, we contend that the initiative of scholars and their willingness to act as experts are the more decisive factors for media coverage than the journalism culture. Actually, only seven scholars account for 20% of the overall presence of scholars in the examined media. On the other hand, as Weischenberg stated (Dernbach, 2012, p. 240), it might diminish the reputation of the discipline if experts “publicly express their opinion on almost all issues”. Moreover, it becomes obvious that our discipline is in a paradox situation, as it is involved in the processes of medialization itself but is at the same time bound to remain a scientific meta-observer of these very same processes.

The conceptualization of the current study did only allow for the examination of explicit knowledge transfer (Weßler, 1997). After all, many journalists have studied the discipline or related fields; thus, they may use knowledge stemming from their own university education without explicitly referring to sources. Moreover, the research subject of the social sciences and the commonsense knowledge of people overlap (Cassidy, 2008), as social science matters are “quite an everyday thing” (Saxer, 1997). Everyone is part of society and practices social behavior in everyday life, and in this regard (in contrast to natural science issues), lay theories also have a claim to legitimacy, as everybody may be termed an expert.

References

Dernbach, B. (2012). Siegfried Weischenberg. “Man ist bis zu einem gewissen Grad nützlicher Idiot.” In D. Dernbach (Ed.), *Vom Elfenbeinturm ins Rampenlicht. Prominente Wissenschaftler in...
populären Massenmedien (pp. 237-257). Wiesbaden: Springer VS.
coverage of science. *Public Understanding of Science*, 21(6), 650-663.

