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A lattice theoretical description of concept hierarchies is de
veloped using for attributes the terms "given", "negated", "opcn" 
and "impossible" as the truth-values of a four-valued logic. Similar 
to the theory orB. Ganter and R. Wille (6) so does this framework 
permit a precise representation of the usual interdependences in a 
field of related concepts - such as superconccpt, subconcept, con
trary concepts etc. - ,  whenever the concepts under consideration 
can be sufficiently described by the presence or absence of certain 
attributes. Apart from the author's opinion that concepts in natural 
languages are formed - of course mainly unconsciously - much 
along thi!; line, we have here a tool to deal with concepts and their 
interrelations on a computer, which may be of importance for some 
applications in artIficial tilfelligence: automatic classification, infor
mation retrieval, data bases, expert systems, automatic theorem 
proving and machine translation. - A program has already been 
implemented. (Author) 

les geometres veulent traiter geometrique
men! ces choses jines, et se rendent ridicules . . .  
B. Pascal, Pensees, 1 ,  Difference entre I'esprit de 
geometric et I'esprit de finesse. 

1, Introdnction 

Concepts and their handling have been pondered over 
for more than two thousand years, at least since Socra
tes; how intensively, perseveringly and portentously is 
shown e.g. by the "Universalienstreit" ("the great de
bate about universals which was to divide the schools for 
four centuries. " (11), p.200) and its modern aftermath 
(19). These considerations were recently revitalized by 
the fact , among others, that "Artificial Intelligence" -
i.e. the attempt to let a computer imitate non-numerical 
performances of intelligence - cannot succeed without 
any treatment whatsoever of concepts, d. say (18), (15), 
(21) and (6), e.g. with questions of automatic classifica
tion, of data bases or expert systems, with problems of 
"machine learning", of automatic theorem proving or 
with a computer simulation of conceptual thinking in 
general. 

Without being able to look into the historical devel
opments, d. e.g. (3), (2), (10), (13) and (11), this article 
offers a representation of concepts which enables us to 
work with them in a computer, of course in a coarser and 
simpler manner. Hereby we assume that a concept (can 
be described precisely enough by attributes in such a way 
that we can always state whether an attribute, relevant 
for r, applies to ( or does not apply to ( or whether it 
remains open which of these two cases holds. This leads 

almost inevitably to a four-valued logic and to concept 
lattices which correspond to, indeed are even iso
morphic to, those defined by R .  Wille as "dichotomic" 
(21), 3. They often occur as building stones for more 
complex concept lattices (23). - In order not to frighten 
non-mathematicians away from this text we have tried to 
ban the mathematics used into part 5. 

R. Wille's more general and also differently moti
vated approach has already led to a vast theory, d. say 
(4)-(6), (14) and (21)-(24), which is by no means 
finished and is also eminently suited for the above men
tioned purposes. 

In order to distance ourselves from certain occasion
ally occurring conceptions let us emphasize that for us a 
concept - also a so-called individual concept! - is an 
abstracl which exists independently whether or not there 
happens to be a word in a natural language denoting 
exactly this abstract. 

Another introductory remark: with the representa
tion of concepts we are concerned with , of course we are 
thinking primarily of uniquely definable concepts, such 
as in mathematics, and we do not presume to have found 
a tool permitting us to describe and to analyze 
adequately very rich - and frequently also vague - con
cepts,  e.g. from the spheres of theology, philosophy or 
art. 

By IN we denote the set of natural numbers, i.e. 
positive integers, thus 

IN� {1, 2, 3, . . .  } ,  

and by lAm the set of the first m (E IN), thus 

lAm � {x E INlx =0; m} (mEIN) .  

2. FuU concept lattices 

To facilitate understanding of the general developments 
may we begin with a simple, almost classical, instance: 

Example 1: 

Considering quadrangles in the Euclidean plane 
of our perception let a1 denote the attribute "equal 
angles" and a2 the attribute "equal sides". 
These two attributes are logically independent of 
each other, i .e.  neither the presence of a, implies that 
of a2, nor the applying of a, that of a,. Or, in other 
words, there are quadrangles which have equal angles 
but unequal sides, and such where the sides are equal 
but where the angles are different. 
With the attributes a1 and a2 the concepts rectangle, 
square and rhombus can be easily described, e.g. by 
stating the pairs (g,o), (g,g) and (o,g), where a g or 
an 0 in the j -th place means that the attribute aj is 
given or open (j � 1,2), respectively. 

rectangle 
square 
rhombus 
proper rectangle 
proper rhombus 

equal angles equal sides 

g 
g 
o 
g 
n 

o 
g 
g 
n 
g 
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However also concepts such as "proper rectangle" 
(i.e.a rectangle which is no square) or "proper rhom
bus" (i.e. a rhombus which is no square) can easily be 
reproduced in our "shorthand" , e.g. by (g, n) or 
(n,g), respectively, where n stand for "negated". 
Here we shall describe no further concepts by the two 
attributes al and az; this will be done below, com
pletely and more generally, cf. e.g. ex.2. 

Since when one defines a concept it seems impossible to 
predicate and deny one and the same attribute simulta
neouslyZ but as one wants to have - at least for formal 
reasons - a conjunction, "and"-connection, of "given" 
and "negated" , we add to g, n and 0 another "truth
value" i for "impossible" . - Dually to this we associate a 
disjunction, "or"-connection, of g and n with "open" . -
n lends itself as negation, denial, of g and v.v. ,  and i as 
negation of o. - This suggests the formal 

Detinition 1: On the set T of the four truth-values g, n, 0 
and i let conjunction (A, and) and disjunction (v ,or) 
be meet and join in the lattice T = (T, A, v) charac
terized by this Hasse-diagram; let the negation C, 
not) be the complement in T. 

o 

9 n 

This "four-valued logic" is, incidentally, different to that 
developed by D .  Scott (17). 

For the following we assume first an arbitrary - non
empty, finite or infinite - sequence of logically indepen
dent attributes aj (with j out of a suitcd index set J), the 
attribute sequence A = (aj)jEJ' In order to reach the 
concepts belonging to A, we first form lists, i .e. se
quences, of truth-values corresponding to our ex. I ,  say 

(g, n, 0, i, g, . . .  ), (n, g, g, 0, n, . . .  ), . . . 
etc. Hereby we intend to interpret a g, n, 0 or i in the 
j -th position so that the attribute aj is given, negated, 
open or impossible, respectively (j E J). 

Since lists containing one i or several can hardly be 
distinguished as far as meaning is concerned we here 
unite the i containing lists to a concept i, the impossible 
concept, and thus come to the formal 

Detinition 2: Let A = (aj)jEJ be an arbitrary - non
empty, at most denumerably infinite - sequence: 

a) The terms aj (j E J) are called attributes and A is 
called an attribute sequence. 

b) A list belonging to A is a sequence (tj)jEJ with 
tj E T (s. def. 1) for every j E J; we denote the set 
of these lists by LA-

c) Let a concept belonging to A be a list out of LA 
which does not contain i, or the impossible concept 
i where i is an arbitrary element different to every 
list not containing i. The set of concepts belonging 
to A is denoted by CA' 

In part 5 we shall indicate how this definition can be re
fined. - The restriction ofthe index set J - essentially to 
lA, with n E IN or to IN - is purely technical and can also 
be dropped with more than countably many attributes. 

First we consider 

Example 2: For an attribute sequence A = (a"a2) 
say from ex. 1 - altogether 3' + 1 = 10 concepts 
result. 

It now appears natural to perform the operations of 
conjunction, A, and disjunction, v, as fixed in def. 1 
according to the components, i .e.  for every attribute 
individually. Hereby it would make sense to require 
in addition that should an i appear somewhcre while 
A is being carried out, one should put i as the total re
sult and besides 

cAi=i=iAC 
and 

(vi=c=ivc 
should hold for every concept, out of CA' 
With these operations A and v for our A with two 
elements the set CA becomes a lattice CA = (CA, A, v) 
with the following Hasse-diagram 

(0,") n,.l 

, 

This result immediately leads to 

Detinition 3: For concepts r', bE CA " {j} of an attri
bute sequence A = (a;)j EJ, say 

,= (Cj)j EJ> b = (dj)j EJwith Cj , dj E T" Ii} (j EJ), 
let A (meet, conjunction) and v (join, disjunction) be 

defined by 

128 Int. Classif. 14 (1987) No. 3 - Lex - Concept representation for computerization 

https://doi.org/10.5771/0943-7444-1987-3-127
Generiert durch IP '3.137.41.214', am 01.05.2024, 12:49:25.

Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

https://doi.org/10.5771/0943-7444-1987-3-127


{(C; A
i
d;)j EJ 

( A 0 = 

{ Cj A dj oF i for all j EJ 
if 

there is a j E J with Cj A dj = i 
and 

(v 0 = (Cj v dj)jEJ; 

moreover, let 

( A i = i = i A C, 
(v i =c=ivc. 

For the structure (CA, A, v) achieved in this way we 
write CA-

The fact that a lattice thus again results also in the 
general case - with some here not primarily interesting 
algebraic properties - , is the main content of 

Theorem 1: Let A be an attribute sequence with index 
set J and a = I J I. Then C A is a complete com
plementary atomistic lattice of order 3' + 1 with i 
as zero and (O)jEJ as unit; moreover, CA possesses 
2' atoms, a 2,-1 hyperatoms and 2a antiatoms. CA 
is in general, i .e .  for a > 1, neither semimodular 
nor orthocomplementary. 

We shall give the proof in part 5 with the tools which are 
made available there. 

Concerning concepts ( and b of an attribute sequence 
A one denotes in a natural manner ( as sUbconcept of b 
- and correspondingly b as superconcept of ( - ,  if ( lies 
under b with respect to the order relation, s, induced by 
the lattice CA, thus if ( ,.; 0 holds. Further it appears 
natural to define for every concept ( out of CA an op
posed concept <interchanging, roughly spoken, g with 
ll. - These indications give rise to 

Definition 4: Let A = (aj)jEJ be an attribute se-
quence and (, bE CA: 
a) C A is called full concept lattice - belonging to A -

and let =5 be the order it induces, thus 

( ,.; 0 <= > ( A 0 = c. 
b) I is named subconcept of 0, and osuperconceptofc, 

if,,.; bholds. 
c) Because of the completeness of CA for every non

empty subset C of CA there is a uniquely deter
mined supremum, ve, and infimum, /\C; this su
premum Of infimum is called smallest superconcept 
(genus proximum) or biggest subconcept of C, re
spectively. 

d) The concept cis opposed or contrary to c = (Cj)j E J 
if 

{(c.) EJ _ J J 
(= i 

o 

{ECA'-.{
i
,O} 

if ( = 0 
= i  

where g = fl, n = g, 6 = 0 and 0 = (O)jEJ' 
By tho 1 and det. 4 one immediately gets 

Theorem 2: 

a) Exactly to the numbers b of the form 3' + 1 with 
a E IN U {llN I}  there is always - up to iso
morphy - exactly one full concept lattice of 
order b .  

b )  Every full concept lattice contains - up to iso
morphy - all full concept lattices of a smaller 
order. To be more precise: if C and D are full con
cept lattices of order c and d,  respectively, with 
c .:::; d, then there is an isomorphism from C into D. 

Because of the order 3' + 1 of a full concept lattice 
the "combinatorial explosion" can also be observed 
here. So we give as a further illustration 

Example 3: The diagram of a full concept lattice with 3 
- independent - attributes, hence with 3' + I = 28 
elements (s. also (23), fig. 4 - fig. 6), results 

3. Reduced concept lattices 

Until now we have always assumed that the single attri
butes of an attribute sequence under consideration were 
logically independent of each other. However this is in 
fact relatively seldom the case even in mathematical con
cept definitions. In most cases the applying of certain at
tributes implies the presence, Of also the absence, of cer
tain others. This is illustrated by 

Example 4: Returning to ex. 1 we again treat qua
drangles in the Euclidean plane with the attribute se
quence (aba2) where now, however, a1 no longer 
stands for "equal angels", but for "parallel opposite 
sides" and a2 means, as before, "equal sides", 
Because a rhombus is always a parallelogram the 
combination (n,g) turns out to be contradictory -
therefore forbidden - and the combination (o, g) 
superfluous,  since its meaning coincides with that of 
(g,g), just as (n,o) with (n,n). The following con
cepts retain their original meaning: 0 (general qua
drangle), (g,o) (parallelogram), (g,n) (proper paral
lelogram, i.e. parallelogram which is no rhombus), 
(o,n) (non-rhombus) and i as the impossible concept. 
Thus we come to the following lattice, "emaciated" 
compared with that of ex. 2, 

Int. Classif. 14 (1987) No. 3 - Lex - Concept representation for computerization 129 

https://doi.org/10.5771/0943-7444-1987-3-127
Generiert durch IP '3.137.41.214', am 01.05.2024, 12:49:25.

Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

https://doi.org/10.5771/0943-7444-1987-3-127


which evidently reflects reality cxactly. 

More generally, dependences of attributes can obvi
ously be described in such way that, starting from a full 
concept lattice, one eliminates certain atoms - i.e. con
cepts different to i ,  which contain no 0 - and one then 
carries out the reduction explained in ex. 4 systemati
cally and repeats it "towards the top" if necessary. Evi
dently in this way again a lattice results which we want to 
call reduced concept lattice. 

This process has been well and accurately described 
by T. Schmottlach (16) after developping the necessary 
algebraic tools. However the problem of a "pleasing" 
characterization of the resulting lattices seems to be still 
unsolved. 

4. Applications 

First it should be emphasized that in my opinion the for
mation of concepts does indeed occur within the 
framework indicated, not only in arts and science but 
also in OUf everyday language. For in the formation of 
concepts it seems to be essential that, on one hand, 
whether or not an attribute applies can be left open, but 
that on the other hand one has to explicitly forbid, to 
negate, the applying of an attribute. We exemplify this 
by 

Example 5: An adult who is neither divorced nor 
widowed can be a husband, bachelor, wife or spins
ter, corresponding to the atoms of ex. 2 in the given 
order if the first attribute is "male" and the second 
"married" . 
In English there are also words for the missing con
cepts in this hierarchy except for i, e.g. the "genus 
proximum" to "husband" and "wife" is "married"; 
normally, however, even in mathematics, there are 
no single words for all concepts of a certain attribute 
sequence, but nevertheless the concepts exist of 
course as abstracts. 
According to our def. 4 the opposed concept to "hus
band" is "spinster)) and v. v . ,  to "bachelor" "wife" and 
v.v. , which I think one could agree with. 

Incidentally, scientific concepts seem to be formed more 
along the ascending and descending lines of the concept 

lattice in question, while everyday language appears to 
work more along the horizontal. 

The obvious trend to increasingly "intelligent" infor
mation systems and to even more efficient expert sys
tems is a hard challenge to artificial intelligence, espe
cially in the field of concept analysis and processing (cf. 
say (15), esp. 3 . ,  p. 22-24, and (18» . Hereby one has to 
pay special attention to the not yet fixed or defined, i.e. 
to the "open" in our nomenclature, as is shown by the 
problem of null values in data bases, which still remains 
without a satisfying solution in spite of arduous at
tempts. It is naturally a help in information retrieval to 
be able to "compute" quickly sub- and superconcepts or 
contrary concepts and "neighbouring" or "related" con
cepts within the proposed lattices, e.g. with automatic 
library search using key words and taking into account 
adjacent concepts. - Machine translation from one 
natural language into another seems to me to be a 
further field for a successful application of our "seman
tic" efforts .  

Within her "Softwarepraktikum" at the Institute for 
Computer Science of the Technical University Clausthal 
in winter 1984/85 S. Bierwirth wrote a UCSD-PASCAL
program "Begriffe" and implemented it on a SIRIUS 1 
(1). The program is based on the ideas developed here; it 
permits one to construct concept lattices by means of at
tributes, to give names to the individual concepts, to 
compute super- and subconcepts or contrary concepts,  
as well as all concepts of a fixed distance to a given con
cept, not only for full but also for reduced concept lat
tices. - Meanwhile R. Wille's Darmstadt group has de
veloped far more efficient and faster programs for differ
ent aspects of concept analysis. s. (4) or (6). 

5. Mathematics 

As already stated the mathematical conceptions and 
connections behind the developments of the former 
chapters, esp. part 2, will be described in this section as 
shortly as possible. 

Let P(S) stand for the power set of a set S and let 

Is"=; {(s, s) I s E S}. 
As far as lattice theoretical nomenclature and notation 
are concerned we refer largely to (7). 

A simple generalization of the concept of an ideal in a 
lattice is needed: let us remember here (cf. say (8), I. 7), 
that every ideal I of a scmigroup S � (S,), in short 
I sl S ,  i.e. IE P (S)" {0} with SI, IS c:: I ,  induces the 
Rees congruence 

== "=; (I X I) U 18 

and thus the Rees quotient S/I,,=;S/== which still makes 
sense for I � 0 too: S/0 = S. - We give 

Definition 5: Let L � (L, /\ , v) be a lattice and K c:: L: 
if K � 0 or K sl (L, /\ ) , then K is called contl'actable 
(with respect to L). 

For every lattice L � (L, /\ , v), trivially, L itself is eon
tractable and also 0, but every ideal of L too; further 
examples will be mentioned immediately after def. 6. -
The following statement justifies our nomenclature. 
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Lemma: In a lattice (L, 1\ , v) let K be contractable and 
let the class belonging to x E K of the equivalence re
lation (K x K) U 1 L be denoted by x. Furthermore let 
(C, 1\) "=; (L, 1\ )/K and 

xvK""x""Kvx (xEL) 

if K * 0, moreover let 

'v' x, yEL "K: x vy "=; 'ifVy. 
Then C = (C, /\, v) is a lattice which has K as zero if 
K* 0. 

Proof: These different assertions can easily be verified 
by a simple computation taking several special cases into 
account. 

This lemma gives rise to 

Definition 6: Let the lattice C constructed according to 
the lemma be called contract of L with respect to K, in 
short C = CK(L). 

For every lattice L = (L, 1\, v) holds trivially 

(1) 

CdL) is thus a trivial lattice, i.e. a singleton. (Let (£" 
in general denote the isomorphy class of a chain with n 
elements (7), p. 16.) In addition is 

C0(L) '" L (2) 

and if L has a zero z also C('l (L) � L. Further 

Example 6: 
a) With K = {0, {I}, {2), {3)) is Ck (p(IA,),n,u) 

out of 9)l3 where 9Jl, denotes the isomorphy class 
of the diamond, hence of the lattice of this diagram 
(7), p .  59. 

b) For lattices Lj = (Lj ' /\, v) with zero Zj (E Lj) for 
j E J let P be the direct product of the Lj , say 
P = (P, 1\, v) = .0 Lj , and Z the set of elements 

lEJ 
of P, which contain a zero, thus 

z"=; {(Xj)j ElEP lakEJ: Xk = z.J; 

then Z :5l  (P, 1\) and C, (P) is a well-defined con
tract. 

c) For K = {0, {I}} one has CK(p(1A.2),n,u) E(f3' 

This last example shows that the complementariness of a 
lattice can get lost3, just as the distributivity - as evident 

by ex. 6a -; even modularity and semimodularity do not 
remain (s. e.g. 2 . ,  tho 1). If, however, a lattice is com
plete or algebra:c so is every one of its contracts. 

By means of the now available tools we have to show tho 
lof 2 . :  

Proof of tho I: Using the notations of  def. 1 and def. 2b 
we form the lattice of lists for A 

LA�(LA' 1\, v)'=:; .0 T, 
lEJ 

and the set I of the i containing lists, thus 

I,,=;{(tj)jEJ E LAlakE J:tk = i}. 

By ex. 6b 

K = (K, 1\, v) = C, (L A) 

is a contract. From def. 3 it follows that K = C A and 
therefore it suffices to prove the assertion for K: 

LA is as a direct power of a complete Boolean lattice T 
also a complete Boolean lattice, and hence K, as a con
tract of LA' is complete according to the above remark. 

With the notations of def. 4d 

YcEK: (1\ � = i , cv(= � 
holds, which can be immediately verified by distinction 
of the various cases; this shows K as a lattice. 

Let J be the index set belonging to A and U the set of 
atoms in K. Since it is evident that 

�-
U = {(tj)jEJ E KI 'v' j E J : tj E {g, n}), 

one has I U I = 2' and K is atomistic, i .  e. every non
zero element of K is a join of atoms (s. (7), p .  179). -
The other statements about cardinalities are just as 
easily verified. 

Semimodularity (s. (7), p. 172) means the validity of 

Vc,b·,eEK: c -< b => ive � bv e ,  

where "x --< y" is  the abbreviation for "x is the lower 
neighbour of y" . As is obvious from the definition of K 
we have 

i -< 9"=; (g)j EJ, 

but, since 

(n)jEJ""n = i v n 

and 9 v n .= 0, not 

ivn==:1Cgvn 

for a > 1, whereby K is shown to be not semimodular in 
this case. 

We assume that K is orthocomplementary, i .e.  to every 
,E K there is a complement " (E K) with c" = , and 

,:o;b => b':o;r' (',bEK). (3) 

n is the only possible complement for 9 and v.v. ; for 
------------- ---------- ------------
(o,g, . . .  )' one can choose between (0, n, . .  ), (g, n ,  . . .  ) 

. ------------- ----------
and n. Because g:O; (0, g, . . .  ) and (3) one has (0, g, . . . J' 
= n in contradiction to 

------� ---------
(o,g, . . .  ) = (o,g, . . . J" = n' = g. 

Thus K is proven to be non-orthocomplementary for 
a> 1 .  
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In the descriptions and analyses so far according to def. 
2c we have for simplicity's sake always identified a con� 
cept with a list or with the impossible concept. In fact, 
however, the lists do not depend on the attribute se
quence A itself, but only on the corresponding index set 
J. When interpreting the contents, however, one needs 
the attributes themselves. In order to remedy this defi
ciency it is enough to consider the pairs (c , A) with 
C E CA as "refined concepts". Of course our structural 
statements remain essentially unchanged since there is a 
bijective correspondence between both definitions of 
concepts as soon as we have fixed a certain attribute se� 
quence. 

We have here used attribute sequences instead of at
tribute sets for purely technical reasons and this does not 
mean any restriction because every set can be well
ordered; on the contrary, there is a certain advantage in 
using sequences since equal elements may occur as terms 
of a sequence, a situation which, where sets are con
cerned, can be mastered by moving from the attributes 
to possibly different names. 

Notes 

This is basicly an English version of the article (12); editors and 
author are greatly indebted to the editors of the above men
tioned volume and to the BI-Wissenschaftsverlag for their kind 
permission to publish. - The author sincerely thanks B. 
Ganter, I .  Kupka, G. Pickert and R. Wille for helpful and 
stimulating discussions, Miss S. Bierwirth (now Mrs. Behnke) 
for good programming and Miss M. S6ding for careful proof
reading. 

2 We omit here the Cusanic "coincidentia oppositorum", of im
portance in the history of philosophy, ct. e.g. [9] or [20], 
p. 250. 

3 This important hint - and hence the correction of a former 
mistake - was given by T. Schmottlach (16), to whom the 
author is greatly indebted. 
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Address: 
Prof. Dr. Wilfried Lex, TU Clausthal, Institut fur Informatik, 
Postfach 230, D-3392 Clausthal-Zellerfeld, FRG. 

FRG: Call for Papers 12th Annual Conference 
From 17-19 March 1988, the German Society for 

Classification will hold its 12th Annual Meeting on the 
topic "Classification and Order" at the Technical Univer
sity of Darmstadt. There will be plenary lectures and 
Workshops. Papers are invited for the latter on the 
following topiCS: 
1) Conceptual Order, 2) Order in Languages, 3) Library 
Classification, 4) Information Retrieval and Databases, 
5) Commodity Classification and Product Description, 
6) Decision Supporting Systems, 7) Recognition of 
Structures in Data Analysis and Statistics, 8) Numerical 
Classification, 9) Order Structures in the Natural 
Sciences. 
The plenary lectures will be delivered by H.H .BOCK, 
Aachen, (Statistics and Data Analysis); W.GAUL, 
Karlsruhe, (Decision Theory and Operations Research) ;  
H.GOEBL, Salzburg, (Dialect Research); E.HOLEN
STEIN, Bochum, (Philosophy of Language); R.FUG
MANN, Idstein, (Order and Information) ; G.LUSTlG, 
Darmstadt, (Information Retrieval); l.RIVAL, Ottawa, 
(Mathematical Order Theory), F.WINGERT, MUnster, 
(Medical informatics and biomathematics). The deadline 
for abstracts was set for Nov.1S, 1987. 
Registration, including the conference proceedings: DM 
50.- for members and OM 100.- for non-members; 
students have free entrance to the lectures. The program 
will be available at the beginning of February 1988. For 
further information or registration contact :  Prof. Dr. 
R. Wille , FB Mathematik, Technische Hochschule, 
0-6100 Darmstadt. 
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